
Neural Networks

Lecture 18
Learning Boltzmann Machines

The goal of learning

• Maximize the product of the probabilities that the
Boltzmann machine assigns to the vectors in the
training set.
– This is equivalent to maximizing the sum of

the log probabilities of the training vectors.
– It is also equivalent to maximizing the

probabilities that we will observe those
vectors on the visible units if we take random
samples after the whole network has reached
thermal equilibrium with no external input.

w2 w3 w4

Why the learning could be difficult

Consider a chain of units with visible units at the ends

If the training set is (1,0) and (0,1) we want the product
of all the weights to be negative.
So to know how to change w1 or w5 we must know w3.

hidden

visible

w1 w5

A very surprising fact

• Everything that one weight needs to know about
the other weights and the data is contained in
the difference of two correlations.

freejiji
ij

ssss
w

p





v
v)(log

Derivative of
log probability
of one training
vector

Expected value of
product of states at
thermal equilibrium
when the training
vector is clamped
on the visible units

Expected value of
product of states at
thermal equilibrium
when nothing is
clamped

The batch learning algorithm
• Positive phase

– Clamp a datavector on the visible units.
– Let the hidden units reach thermal equilibrium at a

temperature of 1 (may use annealing to speed this up)
– Sample for all pairs of units
– Repeat for all datavectors in the training set.

• Negative phase
– Do not clamp any of the units
– Let the whole network reach thermal equilibrium at a

temperature of 1 (where do we start?)
– Sample for all pairs of units
– Repeat many times to get good estimates

• Weight updates
– Update each weight by an amount proportional to the

difference in in the two phases.

jiss

 jiss

jiss

Why is the derivative so simple?

• The probability of a global configuration at
thermal equilibrium is an exponential function of
its energy.
– So settling to equilibrium makes the log

probability a linear function of the energy
• The energy is a linear function of the weights

and states

• The process of settling to thermal equilibrium
propagates information about the weights.

ji
ij

ss
w
E





Why do we need the negative phase?

• The positive phase finds
hidden configurations that
work well with v and lowers
their energies.

The negative phase finds
the joint configurations that
are the best competitors
and raises their energies.










u g

gu,
h

hv,

v)(

)(

)(E

E

e

e
p

Restricted Boltzmann Machines

• We restrict the connectivity to
make inference and learning
easier.
– Only one layer of hidden

units.
– No connections between

hidden units.
• In an RBM it only takes one

step to reach thermal
equilibrium when the visible
units are clamped.
– So we can quickly get the

exact value of :











visi
ijij wsb

j

e

sp)(
1

1)(1

v jiss

hidden

visiblei

j

A picture of the Boltzmann machine learning
algorithm for an RBM

0 jiss 1 jiss  jiss

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

)(0  jijiij ssssw 

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A surprising short-cut

0 jiss 1 jiss

i

j

i

j

t = 0 t = 1

)(10  jijiij ssssw 

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works very well.

reconstructiondata

Why does the shortcut work?
• If we start at the data, the Markov chain wanders away

from them data and towards things that it likes more. We
can see what direction it is wandering in after only a few
steps. It’s a big waste of time to let it go all the way to
equilibrium.
– All we need to do is lower the probability of the

“confabulations” it produces and raise the probability
of the data. Then it will stop wandering away.

• The learning cancels out once the confabulations and the
data have the same distribution.

• We need to worry about regions of the data-space that
the model likes but which are very far from any data.
– These regions cause the normalization term to be big

and we cannot sense them if we use the shortcut.

